
Access and sustainment of H-mode confinement in ramped phases of ITER scenarios A. Loarte, R. Maingi, J.-W. Ahn, ...

H-mode access/sustainment during current ramp up/down phases (I)

> ITER Q_{DT} = 10 scenarios are designed with H-mode access for I_p ramp-up phase, ie I_p <15 MA, and sustainment of H-mode for ramp-down phase
> Power requirements for H-mode access and sustainment in these phases assumed to be similar as for stationary I_p conditions
> Changing edge current by ramps is well known to have effects on H-mode plasma behaviour → consequences for requirements in ITER ?
> Assessment of H-mode access and sustainment requirements in I_p ramping phases for ITER-like current ramps is required to determine viability of scenarios

china eu india japan korea russia usa

Experimental plan

Plasma conditions in NSTX with q_{95} as low as possible (~6) as high as possible I_p and $\delta \sim 0.5$ SN plasmas with favourable grad-B drift

- 1. Determine H-mode threshold for ~ fixed $<n_e>/n_{GW}$ and three ramp-up speeds (around ITER-like) with I_p near flat top value
- 2. Determine H-mode threshold for ~ fixed $\langle n_e \rangle / n_{GW}$ and three ramp-up speeds (around ITER-like) with I_p at ~ half of flat top but $\langle n_e \rangle > n_{e,min}$
- 3. For ITER-like ramp-up with transition I_p at ~ half of flat top and ~ fixed < n_e >/ n_{GW} determine power requirements to keep plasma in H-mode ($P_{input} \sim I_p$, constant, etc. ?
- 4. Repeat at different $< n_e > / n_{GW}$ for ITER-like ramp with I_p at half of flat top
- Starting from plasma in Type I ELMy H-mode assess power requirements to keep H-mode in ramp-down with three ramp-down speeds (constant shape) (P_{input} down in steps or P_{input} ~I_p, etc.)
- 6. Repeat experiment (H-mode access in ramp-up and sustainment in rampdown) at lower field

